公务员考试行程追击题 ♂
任何题目都有技巧,只要摸准了这些题的规律,可以按照相同的思路去解决。那么,对于行程问题我们该运用什么样的思路。首先,我们来看行程问题的核心公式S=VT。这种等号一边是一个量,另一边是两个量乘积的公式,可以称之为正反比关系的存在。这种公式有一个潜在的规律就是,不管题目怎么设置,路程、速度、时间这三个量总有一个是确定不变的,而另外两个量都是变的,只要找到行测公式当中的不变量,正反比的等量关系就找出来了,所以关键是找这个不变的量。一般来说,在这三个量当中,由于往往涉及不同东西或者个体,因此速度大多时候是个变量,所以不变量基本上隐藏在路程和时间这两个量里面,两种情况分别如下。第一,路程作为不变量。这种情况一般来说是比较好寻找的,我们以一道题目为例:【例题】有甲、乙、丙三人,甲每小时走80公里,乙每小时走70公里,丙每小时走60公里。现在甲从A处出发,乙、丙两人从B处同时出发相向而行,在途中甲与乙相遇15分钟后,甲又与丙相遇。求AB两地的距离。( )公里 公里 公里 公里【分析】这是一个相遇问题,在这个题目中,三人速度都有,很明显是不一样的。我们知道,在相遇追及问题里,相遇距离就是两地之间的路程和,不管是甲丙之间还是甲乙之间,都是这一个路程和,也就是说,在这个题目中路程是潜在的不变量,变量是速度和时间。那么我们围绕路程这个等量关系列出两个表示路程的式子就可以解决:设甲乙相遇时间是T,那么甲丙相遇时间就是T+,利用相遇公式有(80+70)T=(80+60)(T+)。解得T=,因此整个距离是525,答案选B。这是关于以路程为不变量的情况。第二,时间作为不变量。这种情况可能更为隐蔽,有时很可能意识不到。我们试想,如果速度是变量,时间也是变量的话,那么路程必然是不一样的,所以在题目中如果提到了二人行驶的路程不一样,一般是在告诉大家时间是变量;还有有一种很隐蔽的说法就是“二人同时出发,在某点相遇”,这就是告诉我们二人所用的时间是相等的,可以完全拿时间做等量关系来列式。【例题】小张和小王同时骑摩托车从A地向B地出发,小张的车速是每小时40公里,小王的车速是每小时48公里。小王到达B地后立即向回返,又骑了15分钟后与小张相遇。那么A地与B地之间的距离是多少公里?( ) 【分析】在这个题目中,两个人的速度是不一样的,而且题目中给出“同时出发”“相遇”这样的字眼,所以时间一定是不变量。拿时间作为不变量,则甲的路程是S+12,乙的路程是S-12,速度分别是48和40,那么用时间相等列式应该表示成48:40=S+12:S-12,解得S=132,选C。以上两个简单的例子说明,我们在遇行程问题的时候,克服心理上的畏难情绪,按部就班地找到题目中的不变量,再利用正反比的知识,就可以求出题目的设问。公务员考试行程问题 ♂
公式法若题干等量关系明确,直接求解。即可通过基本公式:路程=速度×时间直接求解。行程图法若运动过程复杂时,可借助行程图求解。画行程图时利用”路程”建立等量关系。
公务员考试行程问题公式 ♂
行程问题在公考行测中时有出现,每次出现的题型都不是很简单,却又非常讲究技巧。只要学会了方法,解起题来就会节省时间,正确率也非常高。今天中公教育就来讨论一个在行程问题的变化模型,通常我们称之为牛吃草问题。又有人称为牛顿问题,是科学家牛顿先生发明的,根据草原上的现象,草在不断生长且生长速度固定不变,牛在不断吃草且每头牛每天吃的草量相同,供不同数量的牛吃,需要用不同的时间,给出牛的数量,求时间。①标准牛吃草问题同一草场问题是在同一个草场上的不同牛数的几种不同吃法,其中草的总量、每头牛每 天吃草量和草每天的生长数量,三个量是不变的。这种题型相对较为简单,直接套用牛吃草 问题公式即可进行解答。追及—— 一个量使原有草量变大,一个量使原有草量变小原有草量=(牛每天吃掉的草-每天生长的草)×天数例:牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15 头牛吃10天。问:可供25头牛吃几天?中公解析:牛在吃草,草在匀速生长,所以是牛吃草问题中的追及问题,原有草量=(牛每天吃掉的草-每天生长的草)×天数,设每头牛每天吃的草量为“1”,每天生长的草量为X, 可供25头牛吃T天,所以:(10-X)×20=(15-X)×10=(25-X)×TX=5, T=5。II.相遇—— 两个量都使原有草量变小原有草量=(牛每天吃掉的草+其他原因每天减少的草量)×天数例:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。已知某 块草地上的草可供20头牛吃5天,或可供15头牛吃6天。照此计算,可供多少头牛吃10天?中公解析:牛在吃草,草在匀速减少,所以是牛吃草问题中的相遇问题,原有草量=(牛每 天吃掉的草+每天减少的草)×天数,设每头牛每天吃的草量为“1”,每天减少的草量为 X,可供Y头牛吃10天,所以(20+X)×5=(15+X)×6=(Y+X)×10X=10, Y=5。②极值型牛吃草问题题目与标准牛吃草中的追及问题相同,只是题目的问法进行了改变,问为了保持草永远吃不完,那么最多能放多少头牛吃。例:牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15 头牛吃10天。问为了保持草永远吃不完,那么最多能放多少头牛?中公解析:牛在吃草,草在匀速生长,所以是牛吃草问题中的追及问题,原有草量=(牛每天吃掉的草-每天生长的草)×天数,设每头牛每天吃的草量为“1”,每天生长的草量为X,(10-X)×20=(15-X)×10,求得 X=5,即每天生长的草量为5,要保证永远 吃不完,那就要让每天吃掉的草量等于每天生长的草量,所以最多能放5头牛。 标签:每天 问题 时间