公务员行测总分多少分 ♂
总计:共计140题,总分100分
言语理解与表达,共计40题,每题分,总分24分
数量关系:数字推理共计5题,每题1分,总分5分
数学运算共计10题,每题1分,总分10分
判断推理:图形推理共计10题,每题分,总分5分
定义判断共计10题,每题分,总分8分
类比推理共计5题,每题分,总分
逻辑判断共计10题,每题分,总分8分
资料分析:共计25题,每题1分,总分25分
常识判断:共计25题,每题分,总分分
考试时间
2002年起,中央、国家机关公务员招考工作的时间被固定下来,报名时间在每年10月中旬,考试时间在每年11月的第四个周末。
省、直辖市、自治区国家公务员考试时间由各地自行决定并组织实施,部分地区每年在上、下半年各组织一次考试,全国大部分地区每年只考一次,省级以下公务员主管部门不组织开展公务员考试。
公务员行测数学考试题 ♂
旺黔诚大树职教很高兴为大家做出解答!
公务员行测的各个模块里,最令人头疼的就是数量关系模块,它需要你能快速的读懂题目,列出相关的算式,在进行计算,稍一偏差,就前功尽弃,在考场里,有很多人的数量关系模块是直接填涂的'眼缘'答案,甚至还有人没来得及看题,时间不够就直接填涂了,这是一个很让人“放弃”的模块,但是如果想要和其他竞争者拉开差距,数量模块你必须有所收获。
复习阶段,首先是抓重点。自己去总结最近几年的数量题,看看哪些知识点是一直再出现的,比如相遇追及,工程效率,利润率,概率,排列组合等等,对于一直出现在考试卷的题型,我们应该重点去复习,不至于盲目的刷题。
其次,深入理解。数量关系不像言语,常识类型的知识点,需要你去记忆,它的答题需要你对这个知识点的高度理解,能快速找到破题点,并且得出答案,所以需要你去对相应的重点考点加深理解,将它的原理理解透彻,越是囫囵吞枣,你拿到题目,一时间就无法举一反三,需要大量的思考时间,这样也就得不偿失了。
最后,不要迷信于网上的秒杀技巧,也不要排斥秒杀技巧。网络现在有很多的秒杀技巧,但是大多数的时候,你是无法去直接秒杀出来的,只有极少数特定的情况才能使用,所以在复习的过程中,不要沉迷于秒杀技巧的钻研,可以做一个了解,在特殊的情况下,你时间不够无法去按步骤做题时,恰好有相关的类型也可以大胆一试。
应考时,你要做的是有全局观,数量关系最后做。数量关系确实是一个最难的模块,你千万不要一上来就要先把它做完在去做其他题目,正常情况下,你做完其他四个模块后,大约还有10-20分钟的时间,这个时间才是你去破题得分的时候。
有取舍,数量关系题目每年的难度差距不大,题量也固定在20道,短时间里,你不可能每题都做出来,所以你要选择性的去做一些简单的题目,将太难的直接放弃,留出时间来多做一道。
心态平和,在考场的最后十五分钟里,会有语音播报,提醒你还有最后的十五分钟,请检查并且填涂答案等,这个时候千万不要心慌,心态依然平和,十五分钟可以做很多题了;在最后的三分钟里,一定要检查一下自己的准考证号,姓名之类的填写是否正确,答题卡是否填涂完毕,力争做到万无一失,不犯低级错误。
数量模块是一个难点,也是拉分差的一个点,你不能完全放弃,但也不能完全得到,抓重点,有取舍,可得分。
行测数量关系答题技巧有很多,考生可针对不同的题型选择合适自己的方法来帮助答题,常用的方法如下。
1、特值法,所谓特值法,就是在某一范围内取一个特殊值,将繁杂的问题简单化,这对于只需要把握整体分析的数学运算题非常有效。其中,“有效设1法”是最常用的特值法。
2、分合法,分合法主要包括分类讨论法和分步讨论法两种,重点应用于排列组合问题中。在解答某些数学运算问题时,会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。而分步讨论法则是指有时候有些问题是无法解决的,此时需要把问题进行分步,按步骤一步一步地解决。
3、方程法,将题目中未知的数用变量(如x,y)表示,根据题目中所含的等量关系,列出含有未知数的等式,通过求解未知数的值,来解应用题的方法。方程法应用较为广泛,公务员考试数学运算部分有相当一部分的题目都可以通过方程法来求解。
4、比例法,根据题干中相关比例数据,解题过程中将各部分份数正确画出来,进行分析,往往能简化难题,加速解题。
5、计算代换法,计算代换法是指解数学运算题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。实质是数量之间的转化,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
6、尾数计算法,尾数法是数学运算题解答的一个重要方法,即当四个答案全不相同时,可以采用尾数计算法,最后选择出正确答案。
行测数量关系解题技巧的详细内容如上文所述,相信大家都已经看懂了,总之,如果你要获得更多关于考试的方法技巧的话,关注出国留学网,一定会有极大的收获。
五大方法:代入法、赋值法、倍数比例法、奇偶特性法、方程法;五大题型:工程问题、行程问题、溶液问题、容斥原理、最值问题
一、五大方法
1.代入法
代入法时行测第一大法,优先考虑。
2.赋值法
对于公式当中形如A=B*C的式子若能根据其具体情况,合理巧妙地对某些元素赋值,特别是赋予确定的特殊值,往往能使问题获得简捷有效的解决。题干中有分数,比例,或者倍数关系时一般采用赋值法简化计算,赋值法经常应用在如工程问题,行程问题,费用问题等题目中。
3.倍数比例法
若a : b=m : n(m、n互质),则说明: a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。
4.奇偶特性法
两个奇数之和/差为偶数,两个偶数之和/差为偶数,一奇一偶之和/差为奇数;
两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同;
两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数;
5.方程法
很多数学运算题目都可以采用列方程进行求解。
方程法注意事项:未知数要便于列方程;未知数可以用字母表示,当题目中出现比例,百分数等形式也可以用“份数”设NX。
二、五大题型
1.工程问题:工作量=工作效率×工作时间
工程问题一般采用赋值法解题。赋值法有2种应用情况,第一种是题干中已知每个人完成工作的时间,这时我们假设工作量为工作时间的最小公倍数,进而得到每个人的工作效率,从而快速求解;第二种是题干中已知的是每个人工作效率的等量关系,这时我们通过直接赋效率为具体值进行快速求解。
2.行程问题:路程=速度×时间
行程问题一般要通过数形结合进行快速求解,常见的解法包括列方程,比例法等。常考的题型包括相遇问题和追及问题。
相遇问题:路程和=速度和×时间
追及问题:路程差=速度差×时间
3.溶液问题:浓度=溶质÷溶液
溶液问题常见的有两种,一种是溶液的混合,这种问题用公式解决;另外一种是单一溶液的蒸发或稀释,这种题目一般用比例法解决,即利用溶质不变进行求解。
4.容斥原理
两集合型的容斥原理题目,关键是分清题目中的条件I和条件II,然后直接套用公式:满足条件I的个数+满足条件II的个数-两者都满足的个数=总个数-两者都不满足的个数
三集合公式型题目,需要大家记住公式核心公式:
A+B+C-AB-AC-BC+ABC=总个数-三者都不满足的个数
三集合图示型题目,当题目条件不能直接代入标准公式时,我们可以考虑利用图示配合,标数解答。
5.最值问题:三类
第一,抽屉原理,特征“至少+保证”,方法“最不利原则”,答案“所有最不利+1”;
第二,多集合问题,特征“至少”,方法“逆向考虑”;这类题目的做法,一般就是将每个集合不满足的个数求出,然后求和得到有不满足集合的个数最多,再用总数减去这个和,得到满足的个数最少为多少。
第三,构造数列,特征“最多最少”,方法“极端思想”这类题目的做法就是在极端思维情况下,构造出满足条件的一个数列,然后数列求和等于题目所给总和,再根据提问方式得到最终结果。
以上就是大树职教给大家整理的有关于国考行测的数量关系题如何得分的一些资料,希望能够帮助到大家。如果你想要了解或者学习更多关于公务员考试和事业单位考试的知识,欢迎大家前往贵州旺黔诚大树教育官网具体了解!
公务员行测数学题 ♂
二十多个同样大小,且长宽高均为整数厘米长方体,5700能被整除的整数只有25,算下来刚好是228,然后把228分解能被那三个数整除。(分解),.(分解)刚好能分解成6组。所以选B这道题到处都是例题,你自己看看好好补充一下概率的知识点吧。
公务员行测数量关系 ♂
各位小伙伴开始准备2021国考了吗?下面,中公教育就跟大家看一看行测数量关系题型的解题技巧。数量关系题型多,难度也大,大家习惯于用方程法来解题,但是解方程的过程会有一些复杂,容易出错。所以中公教育给大家介绍另外一种解题方法:比较构造法,希望小伙伴们学习和掌握。知识铺垫1、特征:对同一事物进行两种不同的分配方案(有时需构造方案)2、解题步骤:列出对于同一事物的两种分配方案。比较方案间的差异。根据差异建立联系求解。比较构造法应用范围较广,比如工程、简单计算等问题,这里用几个例子来详细说明。试题实例例1.某车队运输一批蔬菜。如果每辆汽车运3500千克,那么还剩下5000千克;如果每辆汽车运4000千克,那么还剩下500千克,则该车队有( )辆汽车。 答案:B【中公解析】对运输同一批蔬菜的2种运输方案,列出方案:比较差异并构造关系式:蔬菜分成了2部分,一部分是运走的,另一部分是剩余的。比较发现,第二种方案每辆车比第一种多运4000-3500=500千克,同一批蔬菜,总量一定,剩余的量少了5000-500=4500,则运走的蔬菜一共多运5000-500=4500千克,每辆车多运走500千克,因此该车队有4500÷500=9辆汽车。选B。除了直接给出2种分配方案可以使用比较构造法外,还可以自己构造出新的方案来使用比较构造法。例2.有一堆黑白棋子,其中黑子个数是白子个数的2倍,如果每次从中同时取出白子和黑子各10个,若干次后,白子刚好取完,剩下30个黑子。问原有白子多少个? 答案:B【中公解析】对取黑白子的取法,除了给出的同时取出白子和黑子各10个,还可以根据黑白子的总量有2倍关系,构造出新的取子方案。同时取出白子10个和黑子20个,则剩余为0个。列出2种取子方案:比较差异并构造关系式:2种取子方案中,每次取得白子个数不变,黑子个数假设的方案比原来的每次多取20-10=10个。黑子总量不变,剩余的黑子少了30-0=30,则一共多取了30个黑子,每次多取10个,则一共取子30÷10=3次。黑白子同时取,那么白子也取3次,每次10个,所以白子一共有30个。选择答案B。例3.有一项工程甲公司花6天,乙公司再花9天可以完成,或者甲公司花8天,乙公司再花3天可以完成,如果这项工程由甲或乙单独完成,则甲公司所需天数比乙公司少( )天。 答案:B【中公解析】对同一项工程的2种完工方案,列出方案:比较差异并构造关系式:两个方案对比,甲多做8-6=2天,乙的少做6天。由于是同一项方案,工作总量不变,则甲多做的2天的工作量等于乙少做6天的工作量。化简,则甲做1天的工作量=乙做3天的工作量。若由甲单独做时,乙做0天,通过方案一看。则乙做的时间比原来少做9天。乙少做9天的工作量=甲多做3天的工作量。则甲单独做需要6+3=9天。若由乙单独做,则甲做0天。通过方案一看,甲做的时间比原来少6天。甲少做6天的工作量=乙多做18天的工作量。则乙单独做需要9+18=27天。甲比乙少27-9=18天。以上就是中公教育给大家分享的比较构造法,今后做题目时要多加练习加以应用,掌握技巧,学会借鉴吸收,同时投入思考,加强实战,踏实肯练,突破难点,迎接2021国考的到来。
标签:问题 题目 关系 方案