今天公考路网(gk6.cn)分享公务员考试排列组合概率的知识,其中也会对公务员考试排列组合汇总进行解释,如果能碰巧解决你现在面临的问题,现在开始吧!
本文导读目录:
公务员考试排列组合概率 ♂
排列组合是公务员考试行测中的一个常考题型,它是数量关系中比较特殊的题型,研究对象和方法独特、知识系统相对独立,同时也是另一个重点考查题型——概率问题的基础。从近几年的公务员考试形式来看,对它的考查难度逐年上升,题型愈发灵活。那么,将此部分的内容弄懂、吃透就显得更为重要了。精图教育专家在此助考生一臂之力。对于数量关系,需要大家能根据题干含义准确、快速地列式和计算。对于排列组合数的计算,绝大部分同学能够轻松应对,但对于如何根据题意快速、准确地列出式子,成为最大的难点,根源就在于对相关的理论知识和方法似懂非懂,理解不透彻。接下来,中公教育专家为考生拨开排列组合的迷雾。排列组合的本质是计数,与之相关的有两个计数原理:加法计数原理和乘法计数原理,分别在什么时候去用它们,需要记住一句口诀:分类用加法、分步用乘法。具体来看:一、分类计数(加法原理)完成一件事,有多种不同的路径,每种路径之间相互无关联,缺了任何一种路径都能完成这件事,叫做分类。总的方法数等于各种路径的方法数之和。通过下面的例子来给大家进行讲解:例1.从甲地到乙地每天有直达班车3班,从甲地到丙地每天有直达班车2班,从丙地到乙地每天有直达班车4班,则从甲地到乙地共有多少种不同的乘车方法?中公解析:可以分成两种不同的乘车方式:第一种,直达:甲→→乙; 第二种,中转:甲→→丙→→乙这两种不同的路径之间相互无关联。缺了直达,可通过中转实现从甲最终到乙这个目标;缺了中转,可通过甲直达到乙。即缺了任何一种路径都能完成这件事,叫做分类。“分类用加法”,总的方法数等于这两类方法数之和。二、分步计数(乘法原理):完成一件事,需要多个步骤,各个步骤之间紧密相连、环环相扣,缺了任何一个步骤都没办法完成这件事,叫做分步。总的方法数等于各个步骤方法数的乘积。继续讨论例1,上面已对它进行了分类,第二种路径的方法数未知,继续探讨。将第二种中转的路径:甲→→丙→→乙分为两步。①:从甲→→丙;②:从丙→→乙。这两个步骤之间紧密相关,缺了任何一个步骤都没办法实现从甲到乙这个目标,叫做分步。“分步用乘法”,中转的方法数等于每步方法数的乘积,即第二种中转的方法数为2×4=8种。再根据加法原理可得:从甲地到乙地共有3+8=11种不同的乘车方式。并不是所有的方法数都能够轻松枚举出来,在正式考试过程中,绝大部分需要利用排列数和组合数来统计方法数。紧接着我们再来一起探讨另一组易混淆概念:组合和排列。三、组合(不需要考虑顺序):从n个不同元素中选出m(m≤n)个元素组成一组,称为从n个不同元素中取出m(m≤n)个元素的一个组合。用 来计数。例2:从全班30个人中选取7个人打扫卫生,共有多少种不同的选取方式。中公解析:题干只要求从30个人当中选出7个人,至于先选谁后选谁,对于整个结果不造成影响,所以不需要考虑顺序,即为组合,用 来计数。四、排列(需要考虑顺序):从n个不同元素中任取m(m≤n)个元素按照一定的顺序排队,称为从n个不同元素中任取m(m≤n)个元素的排列。用 来计数。例3:下个星期,从全班30个人中选派7个人来值班,共有多少种不同的安排方式。中公解析:先从30个人当中选出7个人,对于单个人而言,安排他在周一或周二等不同日期值班是有区别的,顺序对整个结果造成影响,即需要考虑顺序,为排列。用 来计数。精图教育专家相信考生在准确理解以上两组易混淆概念之后,对何时用排列数或组合数计数以及何时用加法或乘法计数原理就有了更清楚的认识。在之后解决相应问题的过程中,希望大家能够运用以上方法技巧准确、快速地列式,实现成功解题第一步!
公务员考试排列组合汇总 ♂
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。【例1】从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?A.240 B.310 C.720 D.1080【解析】此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。【例2】某单位邀请10位教师中的6位参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有( )种。 【解析】按要求:甲、乙不能同时参加分成以下几类:a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;b.乙参加,甲不参加,同(a)有56种;c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。故共有56+56+28=140种。【例3】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )(A) 280种 (B)240种 (C)180种 (D)96种【解析】由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的 选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=60种不同的选法,所以不同的选派方案共有 C(4,1)×A(5,3)=240种,所以选B。【例4】5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?A.4240 B.4320 C.4450 D.4480【解析】把3个女生视为一个元素,与5个男生进行排列,共有 A(6,6)=6x5x4x3x2种,然后3个女生内部再进行排列,有A(3,3)=6种,两次是分步完成的,应采用乘法,所以排法共有:A(6,6) ×A(3,3) =4320(种)。【例5】五人排队甲在乙前面的排法有几种?A.60 B.120 C.150 D.180【解析】五个人的安排方式有5!=120种,其中包括甲在乙前面和甲在乙后面两种情形(这里没有提到甲乙相邻不相邻,可以不去考虑),题目要求之前甲在乙前面一种情况,所以答案是A(5,5)÷A(2,2)=60种。【例6】若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?A.9 B.12 C.15 D.20【解析】先排好丙、丁、戊三个人,然后将甲、乙插到丙、丁、戊所形成的两个空中,因为甲、乙不站两端,所以只有两个空可选,方法总数为A(3,3)×A(2,2)=12种。【例7】将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?A.21 B.28 C.32 D.48【解析】解决这道问题只需要将8个球分成三组,然后依次将每一组分别放到一个盒子中即可。因此问题只需要把8个球分成三组即可,于是可以将8个球排成一 排,然后用两个板插到8个球所形成的空里,即可顺利的把8个球分成三组。其中第一个板前面的球放到第一个盒子中,第一个板和第二个板之间的球放到第二个盒 子中,第二个板后面的球放到第三个盒子中去。因为每个盒子至少放一个球,因此两个板不能放在同一个空里且板不能放在两端,于是其放板的方法数是 C(7,2)=21种。【例8】有多少种方法可以把100表示为(有顺序的)3个自然数之和?( ) 【解析】100可以想象为100个1相加的形式,现在我们要把这100个1分成3份,那么就相等于在这100个1内部形成的99个空中,任意插入两个板,这样就把它们分成了三个部分。而从99个空任意选出两个空的选法有:C(99,2)=99×98/2=4851(种);故选A。
公务员考试排列组合的分值 ♂
国考行测130题分值分布如下:
国考行测题量为130题,总分是100分。具体分值如下:
言语理解与表达:题量40,分值题,总分32。
数量关系:题量10,分值1/题,总分10。
判断推理:
(1)图形推理:题量10,分值题,总分7。
(2)定义判断:题量10,分值题,总分8。
(2)类比推理:题量10,分值题,总分5。
(4)逻辑推断:题量10,分值题,总分8。
资料分析:题量20,分值1/题,总分20。
常识推断:题量20,分值题,总分10。
国考申论题型分值分布:
国考申论题量为五道大题,满分是100分。具体分值如下:
副省级以上(含副省级)。
(1)归纳概括(10分)。
(2)综合分析(15分)。
(3)提出对策(20分)。
(4)贯彻执行Ⅰ(25分)。
(5)贯彻执行Ⅱ(30分)。
市(地)级以下。
(1)归纳概括Ⅰ(10分)。
(2)归纳概括Ⅱ(15分)。
(3)贯彻执行(20分)。
(4)提出对策(25分)。
(5)贯彻执行(30分)。
行测简介
行测一般指行政职业能力,是国家机关单位选拔公务员职业必考的一门课程,在全国各地考生中享有非常高的声望。
考试主要包括常识判断、言语理解与表达、数量关系、判断推理和资料分析等部分,其中常识判断主要测查报考者在政治、经济、文化、科技等方面应知应会的基本知识以及运用这些知识进行分析判断的基本能力。
以上内容参考:百度百科-行测分值
公务员考试排列组合的原理 ♂
你高中老师没讲过吗像这种3 3 2, 1 1 5这种带有重复数字的必须÷,否则就会重复
公务员考试排列组合概率的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于公务员考试排列组合汇总、公务员考试排列组合概率的信息别忘了在本站进行查找喔。标签:排列 组合