今天公考路网(gk6.cn)分享公务员考试抽屉插板的知识,其中也会对公务员考试抽屉问题进行解释,如果能碰巧解决你现在面临的问题,现在开始吧!
本文导读目录:
公务员考试抽屉插板 ♂
湘潭化龙池公考张金海老师解答:数量关系题型一般如下:第一节 排列组合问题 - 51 - 一、基本概念(加法原理、乘法原理、排列、组合) - 51 - 二、合理分类和准确分步原则 - 55 - 三、特殊元素和特殊位置优先考虑原则 - 57 - 四、插板法(分配相同元素问题) - 60 - 五、插空法(不相邻问题) - 63 - 六、捆绑法(相邻问题) - 65 - 七、集团法 - 67 - 八、环排(圆周排列)问题线排法 - 70 - 九、多排问题直排法 - 71 - 十、平均分组问题整除法 - 72 - 十一、排列组合混合问题先选后排法 - 73 - 十二、住店法 - 74 - 十三、定序问题 - 75 - 十四、构造模型法 - 76 - 十五、间接法(正难则反,先总体后淘汰) - 77 - 十六、错位排列问题 - 79 - 十七、比赛场次安排问题 - 80 - 十八、多人传球问题 - 81 - 十九、最短路线问题 - 81 - 第二节 抽屉原理 - 81 - 一、抽屉原理释义 - 81 - 二、解题思路 - 82 - 三、真题解析 - 87 - 第三节 概率 - 95 - 第四节 容斥原理 - 98 - 一、集合基础知识 - 98 - 二、两个集合的容斥问题 - 100 - 三、三个集合标准型容斥问题 - 104 - 四、三个集合整体重复型容斥问题 - 106 - 五、画《文氏图》解容斥问题 - 110 - 第五节 牛吃草问题 - 112 - 一、牛吃草问题的基本模型 - 112 - 二、牛吃草问题的衍变 - 113 - (一)中途死了牛的牛吃草问题 - 119 - (二)草地面积不同的牛吃草问题 - 119 - (三)牛与羊代换的牛吃草问题 - 119 - (四)走自动扶梯上楼问题 - 120 - (五)蜗牛爬井问题 - 120 - (六)战胜船漏水问题 - 121 - (七)抽干涌泉的水问题 - 121 - (八)抽干活水池的水问题 - 121 - (九)开闸泄洪问题 - 122 - (十)排队等候入场问题 - 122 - (十一)资源承载量问题 - 123 - (十二)三速追及问题 - 124 - (十三)变速追及问题 - 124 - (十四)码头接货问题 - 124 - 第六节 分数与百分比问题 - 120 - 第七节 经济问题 - 122 - 一、经济问题基本公式 - 122 - 二、例题解析与同步练习 - 123 - 第八节 行程问题 - 126 - 一、解题方法:方程法、画图法、比例法、赋值法 - 126 - 二、行程问题的基本模型 - 127 - (一)基本相遇问题 - 134 - (二)两次相遇问题 - 135 - (三)往返相遇问题 - 135 - (四)追及问题 - 137 - (五)顺流逆流问题 - 138 - (六)顺水自由漂流 - 140 - (七)上下扶梯问题 - 140 - (八)队首队尾问题 - 141 - (九)火车过桥问题 - 141 - (十)环形运动问题 - 141 - - 三、行程问题的衍变 - 136 - (一)上坡下坡问题 - 136 - (二)走走停停问题 - 136 - (三)车接人问题 - 136 - (四)转化为行程问题的时钟问题 - 137 - 第九节 年龄问题 - 138 - 第十节 工程问题 - 140 - 第十一节 溶液浓度问题 - 143 - 第十二节 植树问题 - 144 - 一、开放线路上的植树问题 - 144 - 二、封闭线路上的植树问题 - 145 - 第十三节 方阵问题 - 146 - 第十四节 鸡兔同笼问题 - 148 - 第十五节 页码问题 - 150 - 第十六节 平均数问题 - 152 - 第十七节 几何问题 - 153 - (一)几何形体周长、面积、体积计算公式 - 153 - (二)几何换算问题 - 154 - (三)几何倍缩问题 - 154 - (四)几何最值理论 - 154 - (五)割补平移问题 - 155 - 第十八节 时钟问题 - 157 - (一)时针与分针之间的夹角问题 - 157 - (二)快钟与慢钟问题 - 158 - 第十九节 日历和时间计算问题 - 160 - 第二十节 公约数与公倍数问题 - 161 - 第二十一节 不定方程问题 - 164 - 第二十二节 统筹问题 - 166 - 一、过河问题 - 166 - 二、节约时间提高效率问题 - 166 - 三、减少步骤提高效率问题 - 167 - 第二十三节 应用题中涉及的数列问题 - 179 - 一、爬楼问题 - 179 - 第二十四节 余数问题 - 180 -解题方法有:解题方法 - 6 - 一、巧算速算法 - 6 - 二、代入排除法 - 8 - 三、数字特性法 - 10 - (一)奇偶特性 - 10 - (二)整除特性 - 11 - (三)大小特性 - 15 - (四)尾数特性 - 15 - (五)平均数特性 - 16 - (六)质因子特性 - 16 - (七)平方数特性 - 17 - 四、赋值法 - 18 - (一)设1法 - 18 - (二)设公倍数法 - 19 - (三)设特殊值法 - 20 - 五、比例法 - 21 - (一)用比例法解统计问题 - 21 - (二)用比例法解溶液问题 - 23 - (三)用比例法解行程问题 - 23 - (四)用比例法解工程问题 - 28 - (五)用比例法解产量问题 - 28 - (六)用比例法解经济问题 - 29 - (七)用比例法解资料分析问题 - 30 - 六、方程法 - 32 - (一)方程法解经济问题 - 32 - (二)方程法解工程问题 - 33 - 七、十字交叉法 - 34 - (一)十字交叉法解溶液混合问题 - 36 - (二)十字交叉法解经济问题 - 37 - (三)十字交叉法解平均数问题 - 40 - (四)十字交叉法解增长率问题 - 42 - (五)十字交叉法解工程问题 - 42 - (六)十字交叉法解三者混合问题 - 43 - 八、实验法(枚举法、穷举法) - 45 - 九、整体思维(从整体上考虑的思想) - 49 - (一)运用整体思维解决资源配置
公务员考试抽屉问题 ♂
一、考情分析抽屉问题在国家公务员考试虽不多见,但是它的难度一直比较大,其中的最差思想也能够帮助其他部分解题,因此仍然需要大家记住它的解法。二、抽屉原理概述抽屉原理,又叫狄利克雷原理,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果。许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决。那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起。将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放。这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果。虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果。如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。在公务员考试数学运算中,考查抽屉原理问题时,题干通常有“至少……,才能保证……”这样的字眼。我们下面讲述一下抽屉原理的两个重要结论:①抽屉原理1将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2。(也可以理解为至少有2件物品在同一个抽屉)②抽屉原理2将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。(也可以理解为至少有m+1件物品在同一个抽屉)三、直接利用抽屉原理解题(一)利用抽屉原理1例题1:有20位运动员参加长跑,他们的参赛号码分别是1、2、3、…、20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数? 【答案详解】若想使两个号码的差是13,考虑将满足这个条件的两个数放在一组,这样的号码分别是{1、14}、{2、15}、{3、16}、{4、17}、{5、18}、{6、19}、{7、20},共7组。还剩下号码8、9、10、11、12、13,共6个。考虑最差的情况,先取出这6个号码,再从前7组中的每一组取1个号码,这样再任意取出1个号码就能保证至少有两个号码的差是13的倍数,共取出了6+7+1=14个号码。(二)利用抽屉原理2例题2:一个口袋中有50个编上号码的相同的小球,其中编号为1、2、3、4、5的各有10个。一次至少要取出多少小球,才能保证其中至少有4个号码相同的小球?个 个 个 个【答案详解】将1、2、3、4、5五种号码看成5个抽屉。要保证有一个抽屉中至少有4件物品,根据抽屉原理2,至少要取出5×3+1=16个小球,才能保证其中至少有4个号码相同的小球。四、利用最差原则最差原则说的就是在抽屉问题中,考查最差的情况来求得答案。因为抽屉原理问题所求多为极端情况,故可以从最差的情况考虑。从各类公务员考试真题来看,“考虑最差情况”这一方法的使用广泛而且有效。例题3:从一副完整的扑克牌中,至少抽出多少张牌,才能保证至少6张牌的花色相同? 【答案详解】一副完整的扑克牌包括大王、小王;红桃、方块、黑桃、梅花各13张,分别是A、2、3、4、5、6、7、8、9、10、J、Q、K。要求6张牌的花色相同,考虑最差情况,即红桃、方块、黑桃、梅花各抽出5张,再加上大王、小王,此时共取出了4×5+2=22张,此时若再取一张,则一定有一种花色的牌有6张。即至少取出23张牌,才能保证至少6张牌的花色相同。例题4:一个布袋里有大小相同、颜色不同的一些小球,其中红的10个,白的9个,黄的8个,蓝的2个。一次至少取多少个球,才能保证有4个相同颜色的球? 【答案详解】从最坏的情况考虑,红、白、黄三种颜色的球各取了3个,蓝色的球取了2个,这时共取球3×3+2=11个,若再取1个球,那么不管取到何种颜色的球,都能保证有4个相同颜色的球,故至少要取12个。五、与排列组合问题结合例题5:某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票? 【答案详解】从10位候选人中选2人共有C =45种不同的选法,每种不同的选法即是一个抽屉。要保证有不少于10位选举人投了相同两位候选人的票,由抽屉原理2知,至少要有45×9+1=406位选举人投票。六、与几何问题结合例题6:在一个长4米、宽3米的长方形中,任意撒入5个豆,5个豆中距离最小的两个豆距离的最大值是多少米? 【答案详解】将长方形分成四个全等的小长方形(长为2米,宽为米),若放5个豆的话,则必有2个豆放在同一个小长方形中,二者之间的距离不大于小长方形对角线长,因此5个豆中距离最小的两个豆距离的最大值是米。
公务员考试抽屉问题视频 ♂
抽屉原理的两个重要结论:1)抽屉原理1将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2。(也可以理解为至少有2件物品在同一个抽屉)2)抽屉原理2将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。(也可以理解为至少有m+1件物品在同一个抽屉)最差原则说的就是在抽屉问题中,考查最差的情况来求得答案。因为抽屉原理问题所求多为极端情况,即可从最差的情况考虑。
公务员考试抽屉插板的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于公务员考试抽屉问题、公务员考试抽屉插板的信息别忘了在本站进行查找喔。标签:问题 抽屉 至少 原理